

DESIGN DE MATÉRIAUX CATALYTIQUES

Claire COURSON

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé - UMR 7515

Université de Strasbourg

- ✓ Introduction : « du catalyseur au réacteur »
 ou « du réacteur au catalyseur »
- ✓ Développement d'un catalyseur sur mesure
- pour la gazéification de la biomasse
 - Le procédé
 - Le catalyseur primaire
 - o L'intégration de la purification du gaz produit
- ✓ Conclusion

J.N. Armor, Catalysis Today 163 (2011) 3-9

Introduction L'évolution future de la catalyse industrielle

Les catalyseurs continueront d'évoluer et de contribuer à soutenir : les nouvelles sources d'énergie, le respect des normes d'émission plus sévères, et l'adaptation à l'évolution des matières premières.

Introduction

Choix, conception et optimisation du catalyseur

Propriétés fondamentales

Mise en œuvre industrielle

Conception du catalyseur Approche multi-échelles

Le design d'un catalyseur passe par son étude à différentes échelles. Cette approche multi-échelles présente un challenge pour les chercheurs car il faut :

- identifier les phénomènes à chaque échelle,
- définir les mécanismes dominants,

afin de comprendre la nature des phénomènes dans l'ensemble des échelles de la catalyse.

Echelles nano-, micro- et macro

Performances optimales Catalyseur + Réacteur

	caracteristiques des reacteurs catalytiq					
ntrinsèque, es de transport namique.	Type de réacteur	Diamètre des grains de catalyseur	Comportement hydrodynamique			
	Lit fixe	1 mm	Piston			
	Lit fluidisé	100 <i>µ</i> m	Agité			
	Lit transporté	10 <i>µ</i> m	Piston			

Combinaison de :

cinétique i phénomène et hydrody

Z. Tian, Chemical Engineering Science 59 (2004) 1745 - 1753 J-L Houzelot, Techniques de l'ingénieur J4025 (2005)

Introduction

Choix du réacteur catalytique

Levenspiel propose des critères de choix fondés sur les analyses de :

- vitesse de la réaction
- stabilité du catalyseur
- recherche d'une sélectivité sur la distribution des produits

O. Levenspiel, The chemical reactor omnibook. OSU Book Stores (1979), 2e éd.(1989). GECat - Cap d'Agde - 27-30 Mai 2013

Introduction : le challenge du design d'un catalyseur

Introduction : Bilan

✓ Le design de catalyseur passe donc par une étude multidisciplinaire associant les méthodes et techniques de chimie physique, inorganique et organique, de physique des surfaces et du solide et de génie chimique.

 ✓ Associées à des techniques combinatoires, la conception, l'optimisation et la fabrication peuvent être accélérées, donnant lieu à des catalyseurs d'activité, sélectivité et stabilité optimales.

 \checkmark La mise en forme du catalyseur est essentielle.

Exemple : Comparaison poudre / pellets / monolithe en reformage du glycérol à la vapeur

L.F. Bobadilla, Applied Catalysis B: Environmental, 123-124 (2012) 379-390.

- Introduction : « du catalyseur au réacteur » ou
 « du réacteur au catalyseur »
- ✓ Développement d'un catalyseur sur mesure pour
- la gazéification de la biomasse
 - Le procédé et le réacteur
 - Le catalyseur primaire
 - L'intégration de la purification du gaz produit

✓ Conclusion

Gazéification de la biomasse

Avantages :

(H₂ + CO) contient 70% de l'énergie stockée dans la biomasse

* multiples applications dépendant de la composition finale

W. Torres et al., Catal. Rev. Sci. Eng. 49 (2007) 407-456

Réduction des goudrons versus réacteur

Mélange complexe d'hydrocarbures condensables à un (sauf benzène) ou plusieurs cycles aromatiques.

	🛪 de T, P ou temps de séjour		Réactions	Agent de gazéi
Concentration	Ľ	Air	Exoth.	Goudrons
Composition	Oxygénés N Aromatiques 1 et 2 cycles N	Vapeur/Oxygèt	ne Autoth.	Goudrons \$
	Aromatiques 3 et 4 cycles Naphtalène 7	Vapeur	Endoth.	Goudrons \$

T.A. Milne et al., Biomass Gasifier — Tars: Their Nature, Formation, and Conversion, NREL, 1998, Technical Report TP-570-25357

GECat – Cap d'Agde – 27–30 Mai 2013

A.V. Bridgwater et al., Fuel 74 (1995) 631-653

Réduction des goudrons versus réacteur

Utilisation de médias de fluidisation

Exigences :

- ✓ disponible (faible cout)
- ✓ résistant à l'attrition (pour une utilisation en lit fluidisé)
- \checkmark actif et sélectif en termes de réduction des goudrons

Média de fluidisation Vapeur/Biomasse = 1 et T _{gazéifieur} = 77	70 C	Sable	Dolomite CaMg(CO ₃) ₂	Olivine (Mg,Fe) ₂ SiO ₄
Rendement en gaz sec (Nm³/kg de biomasse)		1,1	1,9	1.7
Composition du gaz (vol%)	-l ₂	43,6	55,5	52,2
	СО	33,2	24,0	23,0
	CO2	11,7	14,1	16,9
	CH ₄	11,5	6,4	7,9
Teneur moyenne en goudrons (g/N	lm ³ de gaz sec)	43,0	0,6	2,4
		Faible activité	Friabilité	Activité et dureté

Pour une utilisation en réacteur à lit fluidisé, l'olivine est le média le plus approprié

Fast Internally Circulating Fluidized Bed (FICFB) développé par l'Université de Vienne :

- ➤ réacteur à double lit fluidisé,
- le carbone formé dans la zone de gazéification est transféré avec le média dans la zone de combustion pour y être brûlé,
- Ia chaleur produite dans la zone de combustion est transférée grâce au média dans la zone de gazéification,
- > faible teneur en N_2 (<2%) dans le gaz produit.

✓ Introduction : du catalyseur au réacteur ou du réacteur au catalyseur

 ✓ Développement d'un catalyseur sur mesure pour la gazéification de la biomasse

- Le procédé et le réacteur
- Le catalyseur primaire
- L'intégration de la purification du gaz produit
- ✓ Conclusion

Olivine: Activité intrinsèque

Composé naturel (Magnolithe GmbH , Autriche) Composition chimique (Mg_{0,9}Fe_{0,1})₂SiO₄

Element	Mg	Si	Fe	Ni	Ca	Al	Cr
Weight (%)	30,5	19,6	7,1	0,19	0,20	0,07	0,08

D. Świerczyński et al., *Chem. Mater.,* 18/4 (2006) 897 - 905 L. Devi et al., *Appl. Catal. A: Gen.* 294 (2005) 68-79

Fe/olivine : Catalyseur primaire

- Actif en rupture des liaisons C-C et C-H

- Fer Actif en réaction de Water Gas Shift
 - Non toxique en comparaison au Ni (REACH)
 - Peu couteux en comparaison au Ni, Rh, Pt

Fe/olivine > 5%Fe/olivine, 10%Fe/olivine, 20%Fe/olivine

Quelle quantité d'oxyde de fer disponible pour la réduction et la réaction ?

	Fe ²⁺	Fe ³⁺	Fe ³⁺
	(olivine)	$(MgFe_2O_4)$	(Fe_2O_3)
1400°C	9	70 ↑	21
1100°C	3 🔸	64	33
1000°C	6	55	39
400°C	14	55	31

Spectroscopie Mössbauer : Distribution du fer total (%)

A. Kiennemann et al., World patent No. PCT/FR2010/050962 M. Virginie et al., Appl. Catal. B, 101 (2010) 90 - 100 ✓ Fe²⁺ (olivine)

- $400^{\circ}C$ $1100^{\circ}C$: diminution du Fe²⁺
- 1100 C -1400 C : augmentation du Fe²⁺
- ✓ Fe^{3+} (MgFe₂O₄) ⇐ <u>spinelle</u>
- Augmentation de $MgFe_2O_4$

✓ Fe^{3+} (Fe_2O_3)

- Concentration maximale de Fe_2O_3 à 1000 C

Fe/olivine : Catalyseur primaire

Microscopie Electronique à Balayage Electrons rétro-diffusés et microanalyse sur un grain en coupe de Fe/olivine

Fe/olivine calciné à 1000°C

Le fer devient moins difficile à réduire à 1400°C

Concentration en fer homogène autour et à l'intérieur du grain $\rightarrow diffusion du fer$

Concentration élevée autour du grain

Fe/olivine en vaporeformage du toluène

En réacteur à lit fixe

Sans pré-réduction du 10%Fe/olivine calciné à 1000 C

Sous un mélange gazeux représentatif de celui de la gazéification de la biomasse A 825 C pendant 30 heures

Echantillon	Conversion	V_{H2}	Distribution des gaz (%vol)				Sélectivité
	(%)	$(\text{mol}_{\text{H2}}/\text{h/g}_{\text{cat}})$	H_2	СО	CO ₂	CH ₄	en carbone (%)
Composition initiale	/	/	35,0	3,5	17,5	10,0	/
Olivine	39,9	0,12	39,2	30,2	19,1	11,4	0,06
3,9%Ni/olivine	89,6	0,36	48,6	32,7	18,6	0,1	< 0,015
10%Fe/olivine	91,5	0,37	49,5	27,4	18,2	4,9	< 0,001
Thermodynamique*	100	0,39	51,7	39,9	8,4	0,0	/

* ProSim Plus™ software

10%Fe/olivine présente une activité similaire à celle du catalyseur 3,9%Ni/olivine proche des valeurs thermodynamiques

L'addition de fer améliore significativement la sélectivité en hydrogène de l'olivine promeut la réaction de water gas shift (faible rapport CO/CO_2) limite la formation de carbone

M. Virginie et al., Appl. Catal. B, 101 (2010) 90 - 100

✓ Introduction : du catalyseur au réacteur ou du réacteur au catalyseur

✓ Développement d'un catalyseur sur mesure pour

la gazéification de la biomasse

- Le procédé et le réacteur
- Le catalyseur primaire
- L'intégration de la purification du gaz produit

✓ Conclusion

UNIQUE Process and Activities, http://www.uniqueproject.eu

Intensification du procédé : Filtres catalytiques

Développés par la société Pall-Schumacher (Stuttgart)

UNIQUE Process and Activities, http://www.uniqueproject.eu

Média bi-fonctionnel catalyseur/ absorbant performant à une température de compromis entre le reformage d'hydrocarbures et l'absorption de CO₂ (700°C) dans la zone de gazéification du FICFB
 Régénération de l'absorbant par calcination dans la zone de combustion
 Développement d'un média bi-fonctionnel CaO-Ca₁₂Al₁₄O₃₃/olivine

_GECat – Cap d'Agde – 27–30 Mai 2013

Intensification du procédé : Le média en reformage des goudrons

Vaporeformage du toluène en réacteur à lit fixe

Conditions m _{cat} = 100mg, Composition du flux entrant = rapport H ₂ O/Toluène (10g/Nm ³) stoechiométrique dans 50ml/min d'Ar,	Média de fluidisation	Vitesse de production d'H ₂ (mol.h ⁻¹ .g ⁻¹)		
Température = 700°C.	Olivine	3.10-4		
	Fe/olivine	3.10-4		
	CaO-CaAl/olivine	5.10-4		

La sélectivité en CO_2 est plus faible pour CaO-CaAl/olivine que pour l'olivine indiquant une absorption de CO_2 pendant le test de réactivité même à 700°C.

I. Zamboni et al., Applied Catalysis B (2013) - In Press, Corrected Proof

Intensification du procédé : L'olivine en gazéification de la biomasse

20000

15000

10000

5000

0

-HV (kJ/kg)

Réacteur à lit fluidisé d'Epinal (LERMAB) Débit biomasse : 250 g/h

Dépendance importante du rendement en gaz et de la composition du gaz

Augmentation de la production d' H_2 et HV (kJ/Nm³)

diminution des productions de CH_4 et C_2 ш со

→ diminution du PCI du gaz

 \square H₂ \Box C_2H_6

CH₄

- □ c₂ Large augmentation du rendement en gaz
 - → Importante augmentation de la quantité

d'énergie récupérable dans le gaz

I. Zamboni et al., Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorization, Porto, Portugal, Septembre 2012

<u>GECat - Cap d'Agde - 27-30 Mai 2013</u>

Intensification du procédé : Médias de gazéification de la biomasse

Avec CaO-CaAl/olivine à la place de l'Olivine ou du Fe/olivine:

Augmentation rendement en gaz et production d'H₂ → Diminution du PCI gaz

Energie totale récupérable

CaO-CaAI/olivine (700°C) = olivine (750°C)

CO₂ produit partiellement absorbé par CaO car rapport CO₂/H₂ plus faible avec CaO-CaAl/olivine qu'avec Fe/olivine.

Addition de CaO-CaAl sur l'olivine augmente davantage la production d' H_2 à 700°C

que l'augmentation de température de 700°C à 800°C avec l'olivine.

I. Zamboni et d., Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorization, Porto, Portugal, Septembre 2012.

Intensification du procédé : Médias de gazéification de la biomasse...

Avec une augmentation de la température de réaction, on observe :

Une réduction de la concentration des composés aromatiques polycycliques (HAP)

La formation de HAP plus lourds

 \checkmark addition de Fe à l'olivine : diminution du rendement en goudrons (< $30g/Nm^3$)

✓ addition de CaO-CaAl sur l'olivine :

diminution significative de la concentration en goudrons ($18g/Nm^3$) à 700°C, comparable à l'olivine seule à 750 ou 800°C,

très faible concentration de goudrons lourds.

I. Zamboni et al., Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorization, Porto, Portugal, Septembre 2012.

La gazéification de la biomasse a de multiples applications en fonction de la composition finale du gaz produit ...

Traitements primaires Design du réacteur Agent de gazéification

Design du catalyseur Catalyseur primaire Fe/olivine

Purification

H₂S (Fe/olivine) CO (Water Gas Shift)

Intensification du procédé

Introduction : du catalyseur au réacteur ou du réacteur au catalyseur

✓ Développement d'un catalyseur sur mesure pour

la gazéification de la biomasse

- Le procédé et le réacteur
- Le catalyseur primaire
- L'intégration de la purification du gaz produit

✓ Conclusion

Le design de catalyseurs :

« du catalyseur au réacteur » ou « du réacteur au catalyseur » ?

Etude multi-échelles = Diversité de compétences

Remerciements

Dr Dariusz SWIERCZIN	Olivine and Ni/olivine				
Dr Mirella VIRGINIE		Fe/olivine			
Léa VILCOQ	Master	Fe/olivine			
Ingrid ZAMBONI	Doctorante	CaO-CaAl/olivine			
Yvan ZIMMERMANN	Technicien				
Suzanne LIBS	Ingénieur				
Pr A. KIENNEMANN					
Pr P.U. FOSCOLO	Coordinateur du contrat européen UNIQUE				

Merci pour votre attention